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ABSTRACT

While Online Social Networks (OSNs) enable users to share
photos easily, they also expose users to several privacy threats
from both the OSNs and external entities. The current pri-
vacy controls on OSNs are far from adequate, resulting in
inappropriate flows of information when users fail to un-
derstand their privacy settings or OSNs fail to implement
policies correctly. OSNs may further complicate privacy ex-
pectations when they reserve the right to analyze uploaded
photos using automated face identification techniques.

In this paper, we propose the design, implementation and
evaluation of Cryptagram, a system designed to enhance
online photo privacy. Cryptagram enables users to convert
photos into encrypted images, which the users upload to
OSNs. Users directly manage access control to those photos
via shared keys that are independent of OSNs or other third
parties. OSNs apply standard image transformations (JPEG
compression) to all uploaded images so Cryptagram provides
an image encoding and encryption mechanism that is toler-
ant to these transformations. Cryptagram guarantees that
the recipient with the right credentials can completely re-
trieve the original image from the transformed version of the
uploaded encrypted image while the OSN cannot infer the
original image. Cryptagram’s browser extension integrates
seamlessly with preexisting OSNs, including Facebook and
Google+, and currently has over 400 active users.

Categories and Subject Descriptors

K.4.1 [Public Policy Issues]: Privacy; K.6.5 [Security
and Protection]: Unauthorized Access

Keywords

photo privacy; online social media

1. INTRODUCTION
Petabytes of imagery data have been posted by users to

Online Social Networks (OSNs) with Facebook alone receiv-
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Figure 1: Example Cryptagram user experience. On the
left, we show a social network with embedded Cryptagrams,
uploaded by a user. A browser extension decrypts the im-
ages in place as shown on the right.

ing over 250 million photo uploads per day [24], storing
10,000 times more photos than the Library of Congress [14].
Users feel the need internally and externally (peer pressure)
to share photos on OSNs given the convenience of usage and
their immense popularity [21, 2, 25, 27, 34]. Users share
personal and potentially sensitive photos on OSNs, thereby
exposing users to a wide range of privacy threats from ex-
ternal entities and the OSN itself [9, 33, 31]. We consider
two basic factors that trigger privacy concerns for end-users
in OSNs.

User/System Errors: A user who uploads an image
to an OSN may wish to share it with only a select group
of people, which OSNs partially satisfy with privacy set-
tings. Contextual integrity [23] would state that the user
is attempting to implement her own notion of appropriate
information flows. But a recent study confirmed that Face-
book users’ impression of their sharing patterns and their
true privacy settings are often inconsistent [18]. Moreover,
an OSN may fail to correctly enforce their privacy settings,
such as the case when Facebook exposed its own CEO’s pri-
vate photos in a systemwide glitch [9].

Face Identification: A passive observer or a hosting
OSN could extract large volumes of online photo uploads,
indexing and discovering images within a corpus that belong
to a specific user [33]. Mining of photo corpora can lead to
the unexpected disclosure of individuals’ locations or their
participation in events. Facial data mining incidents have
resulted in litigation against OSNs and further weakened
the integrity of the relationship between the social network
and the individual [31].
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In this paper, we present the design, implementation and
evaluation of Cryptagram, a system designed to address
these photo privacy concerns in OSNs. A basic design goal of
Cryptagram is to build a usable solution that can offer strong
privacy guarantees for end-users that remains backwards
compatible with existing OSN user interface designs. To
maintain the conventional feel of an OSN, Cryptagram uses
the abstraction of an image interface (RGBA pixels) to ma-
nipulate the core image formats used by OSNs. Cryptagram
leverages an end-to-end encryption system to transport im-
ages, which are uploaded to OSNs. Figure 1 illustrates a
specific example of how Cryptagram represents normal im-
ages as encrypted images.1

A challenge in the design of such an end-to-end image en-
cryption/decryption mechanism is to be resilient to image
transformations by the OSN. For instance Facebook converts
all uploaded photos, regardless of original format, to JPEG,
choosing quality settings without user input. The recipient
of a Cryptagram image must be able to retrieve the original
image from the OSN-transformed version. In this paper, we
describe the notion of q, p-Recoverability (Section 3.1) which
formalizes the aforementioned property that enables the as-
sessment of embedding protocol designs. We describe a class
of JPEG embedding protocols that can achieve the q, p-
Recoverability property for different JPEG quality trans-
formation levels. The top-down techniques that we discuss
for designing q, p-Recoverable protocols can also be applied
to lossless image compression formats.

Cryptagram addresses a problem that is fundamentally
different from conventional image steganography. While steganog-
raphy aims to hide data in plainsight and avoid detection [11],
Cryptagram makes obvious that it is hiding data with the
added aim of efficiently transporting bits in the image medium
while being robust to image transformations. Despite the
differences in problem definition, steganography does have
the same mechanical use as Cryptagram for transporting
bits in an image. When comparing the effective efficiency
of our approach to steganography, Cryptagram packs many
more bits per pixel (Section 6).

Cryptagram differs significantly from the recent work on
photo privacy, P3 [29]. Unlike P3, Cryptagram operates
completely in encrypted bit space and does not reveal sensi-
tive cleartext data of photos to external entities (Section 8).
Cryptagram also does not rely on third-party providers for
providing photo privacy.

We present several key results in our evaluation. For
JPEG Cryptagram images uploaded to Facebook, we find
that JPEG compression quality for those high entropy im-
ages is in the range of 76 to 86 (for natural images, usually
quality is 74). Given these recompression target ranges, we
demonstrate JPEG embedding protocols that, in tandem
with error-correcting codes, achieve an effective efficiency of
3.06 bits per pixel, which is 2.68× greater than the best
related work. We also summarize a study of recoverability
when recompressng already compressed images. We further

1In this example, a user has uploaded a single Cryptagram
image per image in this Figure. OSNs typically recompress
and resize images within their backend infrastructure, pre-
senting the most bandwidth-friendly version (thumbnails)
as they deem appropriate. In order to render the decrypted
Cryptagrams for thumbnails, Cryptagram infers from URL
of the thumbnail how to fetch the full-size image, which
Cryptagram fetches and decompresses when a user indicates
our extension should do so.

http://www.....

updateContextMenu(){...

handleDecryptRequest(){...

getPassword(){...

Browser ExtensionBrowser

1) Extension injects JavaScript

2) User right-clicks Cryptagram <img>

3) Pixel shades are extracted by JavaScript

4) User is prompted for a key

5) Decryption is attempted. If successful, Cryptagram <img>

    element’s src is replaced with the decrypted data URI.

Password?            ••••••

Save Image As...

Decrypt Image...

...zIGRpc3Rpbmd1aXNoZWQsIG5vdCBvbm

x5IGJ5IGh4sIGJ1dCBieSB0aGlzIHN....

Secret Cat Photos

Figure 2: An overview of the Cryptagram user experience.

illustrate a design point comparison of recoverability versus
filesize expansion when comparing JPEG and webp lossy
compression formats.

Our end-to-end Cryptagram system has been deployed
to the web. Figure 2 summarizes a user’s experience with
the current decoder. Our decoder browser extensions in-
tegrate seamlessly with existing OSNs including Facebook
and Google+ while being compatible with their complicated
DOM structures. We have nearly 400 active users of our
decoder extension and over 300 users have agreed to our
IRB-approved study through which they submit high-level
data about their on-going image encrypting and decrypting
habits with Cryptagram.

2. SYSTEM MODEL

2.1 Problem Statement
The basic problem that Cryptagram aims to address can

be stated as follows: Two users U and V are members in an
OSN and have a shared key k (e.g., password), independent
of the OSN. U wants to use the OSN to share an image I
with V but does not intend to upload I to the OSN since
the OSN or other unauthorized users may also be able to
view I . Instead, U needs an encryption mechanism that can
transform I into an encrypted image I ′, which V can re-
trieve, decrypt and obtain I (using the shared key k). The
key challenge is that when U uploads an encrypted image
I ′, the OSN can apply image transformations and the image
V downloads may significantly differ from I ′. Hence, the
sharing mechanism needs to be resilient to image transfor-
mations.

To better understand the transformation-resilient image
encryption problem, we outline the basic image encoding
and decoding steps used by Cryptagram and the property
that Cryptagram aims to achieve:

• A user U encrypts a to-be-shared cleartext image, I ,
using a strong block cipher with a secret key, k, to produce
a byte sequence, E(I, k). This k may be human-readable (a
password) or part of a hybrid cryptosystem in which the k
is generated and shared using public key cryptography.

• An image encoding protocol, C, embeds E(I, k) into
the spatial domain of an image, Im = C(E(I, k)) which the
OSN transforms as T (Im). In this paper, we restrict T to be
the identity transformation (lossless format) or a standard
lossy image compression. We use JPEG for the lossy format
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in much of the evaluation since that is a commonly used
standard across OSNs.

• An OSN user V who is an authorized recipient of the
image needs to be aware of the block cipher secret key k. Us-
ing this key k and an image decoding algorithm, V should
be able to successfully decode I from a transformed version
T (Im). Here, we aim to achieve recoverability (intuitively,
data integrity of the embedded message), which in the case
of a lossless format is tautologically true sans other transfor-
mations. For JPEG, we aim for q, p-Recoverability property:
given a minimum quality level q of the transformed image
T (Im), the decoding protocol should enable V to decode the
original image I with high probability, p. We denote this re-
coverability probability using p, where the ideal case is when
p = 1; however, achieving p = 1 may not always be feasible.

• Adversary, Eve, who passively observes T (Im) should
not learn anything about I .

2.2 Design Goals
The aforementioned problem statement highlights two key

design goals of Cryptagram: data confidentiality and prob-

abilistic data integrity for lossy images. For data con-
fidentiality, Cryptagram leverages trusted algorithms that
users may use to ensure that data has been encoded with
a strong proofs of security. For probabilistic data integrity,
since Cryptagram aims to create images for use on OSNs, we
can relax the constraint of traditional information security
data integrity [10] for lossy image formats such as JPEG.
This relaxation enables the Cryptagram design to incorpo-
rate features that demonstrate a spectrum of data integrity
when a social network transforms uploaded images.

But given these goals, should U and V use an OSN to
share personal images at all? We accept as a constraint that
many users desire the convenience of social networks [21].
This“convenience”constraint raises the following design goals
that Cryptagram meets:

Usable: We aim to offer a system that affords users intu-
itive privacy on top of the images that they share on OSNs.
While several offline approaches exist to preserve privacy
(e.g., PGP [39]), Cryptagram makes it possible for users to
create and share private photos without disrupting the OSN
experience.

Widely Deployable and Applicable: To gain wide adop-
tion, we have created a cross-browser, cross-platform, cross-
image format system that enables Cryptagram to be used as
both an encoder and decoder. The reduced friction to cre-
ating and accessing Cryptagram images removes the barrier
to broader use of the technology.

Efficient: Compared to alternative methods, we present
a system that offers significantly more data storage for a
given file size or image dimensions.

2.3 Security Overview

2.3.1 Threat #1: Facial Data Mining

In this threat, the adversary is the OSN, whose aim is
to execute facial data mining algorithms on uploaded im-
ages. In recent years, as social networks’ corpi of images
have grown dramatically, this is a serious concern for the
privacy-conscious individual.

Approach. We have devised a scheme that reveals no
information about the original image to the OSN. As we
discuss in Section 4, the use of our embedding algorithm by

nature thwarts facial data mining by embedding the clear-
text (e.g., facial) data indirectly as encrypted bits in the
spatial domain of the transport image.

Security Guarantees. With the use of a block cipher
to transform the secret message, Cryptagram retains the
strength of the underlying security properties of the chosen
algorithm. With the use of public key cryptography users
can retain cryptographic strength while leveraging a trusted,
separate channel to bootstrap their sharing.

2.3.2 Threat #2: Misconfigured Privacy Controls

OSNs may fail to correctly deploy access control policies
or users may accidentally misconfigure confusing access con-
trols. The use of Cryptagram creates a separate channel of
communication to ensure, with cryptographic strength, that
only intended recipients see the cleartext photo. With the
correct use of Cryptagram, an OSN could suffer a full system
breach and encrypted images would remain private.

2.3.3 Limitations

Detecting and Blocking Cryptagram Images. Crypta-
gram does not address the problem of an OSN detecting and
inhibiting the upload of all Cryptagram images. Steganog-
raphy may be proposed in this scenario but problem redefi-
nition and the tradeoff in efficiency make steganography an
inappropriate application.

Unsupported Transformations. Though Cryptagram
images are robust to varying degrees of JPEG compression,
they does not support many other transformations. For ex-
ample, cropping or rescaling a Cryptagram will generally
break its encoding.

Brute-Force Cryptographic Attack. Cryptagram users
who choose weak passwords in the symmetric key scheme
can be attacked with dictionary or brute-force techniques.
To address this limitation, we encourage users to abide by
strong password creation techniques [22, 28] when using
symmetric key credentials. When using public key cryp-
tography, we encourage users to leverage the use of a public
key infrastructure that is coupled with Cryptagram as we
follow Key Continuity Management practices [13].

Copy and Paste. Users who gain access to cleartext
images can copy and paste those images to whomever they
choose. We believe this problem will persist despite any
attempts, short of controlling all hardware at the disposal
to humans accessing social networks.

3. IMAGE FORMATS IN OSNS
Several image formats are used across OSNs. While Face-

book uses only the JPEG format to store images (and, more-
over, strips uploaded images of EXIF data), Google+ and
other networks allow for a variety of lossless (e.g., PNG) and
lossy (e.g., webp) formats. Our goal is to design a generic
photo privacy solution that can work across different im-
age formats. While lossless compression techniques are rela-
tively easier to handle, determining an image encryption/de-
cryption mechanism in the face of a lossy transformation is
much more challenging. Given the popularity and broad use
of JPEG, we use JPEG as our primary image format to de-
scribe the design of Cryptagram. We show how Cryptagram
can be easily applied for other image formats including lossy
image formats like webp.

Our design primarily focuses on embedding data in the
spatial dimensions of an image. We define an embedding
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protocol to be an algorithm that describes the creation of a
sequence of bits and how those bits are embedded into the
spatial domain (pixels) of an image. We design embedding
algorithms that work in a top-down fashion; that is, the data
to be embedded is written into the spatial domain of an im-
age on a pixel level rather than in any protocol-specific man-
ner. We believe that a top-down approach allows us to meet
the aim for wide deployablility and applicability in terms
of implementation, testing and future image formats. The
top-down API means that the design of codecs can apply
or be tested across multiple formats with ease. When codec
design depends on DCT coefficients, for instance, there are
non-intuitive programming interfaces that would be required
to make that facility addressable to the PNG format and not
just JPEG, webp, and other DCT-coefficient based compres-
sion algorithms.

Assuming a passive adversary, this approach is a valid
solution to the security threats that we outlined in the pre-
vious section. This is an especially prudent design choice
considering that lossy image transformations will most in-
tuitively aim to preserve higher order features of an image
rather than its bit-wise representation.

The generic interface to the image is thus the four possible
color channels red, green, blue, and alpha as well as their
corresponding bit value. For JPEG, this means up to eight
bits per the first three color channels. For PNG, we have up
to 16 bits per channel for all four possible channels.

3.1 Defining q, p-Recoverability for JPEG
JPEG image transformations are inherently lossy in na-

ture. With the aim of probabilistic data integrity, we make
concrete the goal of relaxing the constraints of traditional
notions of information security data integrity [10] for em-
bedding data in JPEG.

We define the q, p-JPEG Recoverability (or, simply q, p-
Recoverability) property of embedding protocols as follows:
given a minimum quality level q that an OSN preserves in a
transformation T of an uploaded image, an authorized recip-
ient should be able to decode the original image with high
probability p, where in the ideal case p = 1. The concept of
q, p-Recoverability can also be applied to other lossy image
transformations though the corresponding attainable values
of q and p are dependent on transformation T .

In the context of JPEG images, we define a Cryptagram
protocol as a message-JPEG encoder G and JPEG-message
decoder G′. Given an input image2 I , the first step in
Cryptagram encoding is to convert the image into an en-
crypted sequence of bits m = E(I, k), for clear-text image
I and a block cipher key k. We refer to the input to the
JPEG encoder as a sequence of bits m. Given m, the pro-
tocol encodes m in the spatial domain of a JPEG image,
Im = G(m). JPEG (denoted by the function T , its inverse
for decompression is T ′) compresses Im at quality q to pro-
duce a sequence of bits, T (Im, q).

The recipient uses a two step decoding mechanism to re-
trieve an encrypted set of bits m′: (a) the first step involves
using the decompression step T ′ to produce T ′(T (Im, q));
(b) the second step involves using the JPEG-message de-

2We mean that I is a sequence of bits that represent an
image format that a browser can render. Notably, Crypta-
gram’s embedding can be a used with any arbitrary message
I for delivering a message via the spatial domain of a trans-
port image.

Im = G(m)

G′(T ′(T (Im, q))) = m′ =p m =⇒

G is q, p-Recoverable

Figure 3: q, p-Recoverability in a nutshell.

coder G′ to retrieve an encrypted sequence of bits m′ =
G′(T ′(T (Im, q))). Ideally, m′ should match m; if they do,
the recipient can use the secret key k to decrypt m′ to re-
trieve the original input message. However given the lossy
nature of the transformations, the message-JPEG encod-
ing and JPEG-message decoding steps may not always suc-
ceed. Here, we use the term p to denote the probability
that the algorithm successfully decodes the input bit se-
quence m. Mathematically, we denote this as: m′ =p m.
If this constraint holds, then we define the protocol to be
q, p-Recoverable. By considering a large sample set of in-
put messages, we can statistically estimate the value of p for
a given quality threshold q. The aim of Cryptagram is to
identify q, p-Recoverable protocols that attain p close to one
for low quality values and a high bits per pixel ratio. We
summarize these ideas in Figure 3.

4. SYSTEM DESIGN

4.1 Lossy Images
To discuss how to embed data into a lossy image, we fo-

cus on the JPEG compression algorithm, though our design
principles apply to other lossy formats.

How should one embed bits into the spatial domain of an
image? To approach this challenge, we develop a mapping
of bits to colors for specific pixels in an image. Intuitively,
when choosing points (coordinates) in the color space to rep-
resent bits, we leverage the observation that the lossy codec
may shift an initially embedded point (pixel’s color) dur-
ing encoding and decoding an image; however, the sphere
in the color space within which that point may move does
not overlap with other point-centered spheres. This is to say
that when choosing what values to embed and how to coor-
dinate pixel values, protocol designers must be sensitive to
the assumption that the lossy codec will shift values within
spheres in a color space. This intuition guides our JPEG de-
sign discussion below but, more importantly, is the generally
applicable principle for Cryptagram protocol design.

The principal unit of embedding in Cryptagram is the
Cryptagram pixel block (CPB). Multiple CPBs must fill or
pack a 8 × 8 JPEG pixel block (JPB) for each channel of
JPEG (luminance, chrominance red and chrominance blue),
which is the “atomic unit” of pixels that undergoes JPEG
compression [36]. We consider how to pack bits into the
spatial domain of JPEG given two goals: (1) efficient bit
packing (increasing the number of bits per pixel) and (2)
q, p-Recoverability.

4.1.1 Embedding in the Spatial Domain

Cryptagram Pixel Blocks.
For protocol design we examine how to manipulate 64

pixels to embed bits efficiently. We embed symbols into
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the 64-pixel JPBs for each Y CbCr channel with multiple
Cryptagram pixel blocks (CPBs) per JPB. A CPB could be
any shape that packs into a JPB. For our discussion, we
consider 1× 1 and 2× 2 CPBs.

The composition of a CPB thus is a shape description,
w × h (width, height) and a set of rules, R, for translating
a symbol, x, or set of bits (x = b0, . . . , b|x|) into red, green,
and blue tuples (r, g, b) that we embed in each pixel of the
CPB according to the appropriate RGB →Y CbCr conver-
sion. For simplicity, we represent the CPB embeddings for
each channel as LRL

w×h, where RL are the rules that corre-
spond to the channel, L, how to embed x to color values for
L.

Because JPEG compression applies different downsam-
pling and quantization matrices to luminance and chromi-
nance channels (but applies the same compression to the two
chrominance channels), we express the embedding protocol
for a CPB as:

(

Y RY

wY ×hY
, CRC

wC×hC

)

where Y corresponds to luminance and C to chrominance
channels.

The rule set, R provides a large space for Cryptagram
protocol designers. Intuitively, the composition of rules be-
comes a choice of three parameters: (1) how many bits to
embed, (2) the number of discretizations to use (for which
the number of bits to embed determines the lower-bound)
in the color space, and (3) the choice of which discretization
values from the color space to use. In short, we determine
how many colors to use, what values they represent, and the
resulting bitrate.

The JPEG compression algorithm compresses least the
luminance channel of the three yielded by the RGB →
Y ′CbCr transformation. If we choose only to discretize val-
ues in luminance, we have an effective range of [0, 255],
which corresponds to “grayscale”. We denote this scenario

as
(

Y RY

wY ×hY
, C0

)

, using C0 to denote that chrominance is

not used.
On Chrominance Embedding. When considering the

use of the chrominance channels in the embedding protocol,
there are several complications to address in this proposal.
As described in the JPEG specification, the two chromi-
nance channels are stored with significantly less fidelity than
luminance. Both chrominance channels are down-sampled
(by default in libjpeg, 2:1) and a more aggressive quanti-
zation table is used to further reduce the number of bits that
need to be stored [36]. Intuitively, the chrominance channels
are less efficient for embedding data in the spatial domain.

Encoding Algorithm.
We demonstrate the embedding algorithm in Figure 4. As

we discuss the embedding algorithm at a high-level, we will
refer to the concrete demonstration in that figure.

The first step of the encoding algorithm transforms the
input clear-text image I into a sequence of encrypted bits m
using a shared key k such that m = E(I, k). Here, we use
a standard block cipher algorithm AES in CCM mode (128
bit keys and 64 bit tag size). The encoding algorithm from
this point chooses a small collection of bits at a time and
converts these bits into Cryptagram pixel blocks. Figure 4
Step A shows how our example encrypted output message m
is the sequence of characters, “Security.” Using the base64
representation of the character, we know that the sequence

Figure 4: Encoding algorithm illustration. We demon-
strate how Cryptagram maps an encrypted message’s se-
quence of bits (Steps A-C) to color values (Step D) and how
those correspond to embedded pixels (Step E).

of bits for each character is shown under Step B. We then
show in Step C how the sequence of bits for the first char-
acter (S’s representation as 010010) can be split into two
three-bit sequences, the aforementioned “small collection of
bits.” Using a chunked grayscale color spectrum, we map
the three-bits to an index in the array of values. The in-
dex’s group representative (in this case at Step D, it’s the
grayscale value of 72) is what is embedded for the appropri-
ate pixels, as shown in Step E. In this example, we continue
to pluck off three bits at a time, for Steps B and C, then
map those three bits values to grayscale values in Step D.
Finally, we continue to embed the values left-to-right, top-
to-bottom in this simple example for Step E. We have used
a 2× 2 CPB for this illustration, which packs perfectly into
a standard 8×8 JPB. An alternative format could have used
1× 1 CPBs, shading one pixel instead of four in Step E.

Figure 5 illustrates at a high-level where data is embedded
in a typical Cryptagram image format.

We make the above example more concrete in the follow-
ing formalism. An embedding algorithm, a, assumes that
b bits will be embedded per CPB. Given b, a has a bijec-
tive mapping BL : {0, 1, . . . , 2b} → La where La ⊆ [0, 255].
Given a bit sequence, s, a uses BL to map b-length sub-
strings of s to the corresponding L channel values that will
be embedded at that particular pixel. Given the notation
we have introduced, B is a more specific case of the notion
of rule sets RL we presented earlier. BL mappings underpin
the designs we present in this paper.

We can measure the efficiency of BL based on b and the
size of the channel’s CPB to which the output of BL mapped
as b

|CPB|
bits per pixel, where |CPB| is the number of pixels

occupied by the CPB: |CPB| = w × h.
From our discussion of the embedding protocol and the

notion of q, p-Recoverability, we have laid the groundwork
for how the designer’s choice of protocol parameters (dw,h,
B, etc.) adjust the effective efficiency of the end-to-end pro-
tocol.

Example Encodings for Reasoning about q, p-Recoverability.
To demonstrate the tradeoff between efficiency (number of
discretizations in B per CPB size) and q, p-Recoverability
that we must consider in protocol design, we present two
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Figure 5: Layout of a Cryptagram. Each box is a sequence
of shaded pixels representing the range of values for a par-
ticular protocol.

Name Notation Luminance-only B Mapping

Bin
(

Y 1

1×1
, C0

)

B : {0, 1} → {0, 255}

Quad
(

Y 2

1×1
, C0

)

B : {0, 1, 2, 3} → {0, 85, 170, 255}

Oct
(

Y 3

1×1
, C0

)

B : {0, 1, ..., 7} → {0, 36, 73, ..., 255}

Hex
(

Y 3

1×1
, C0

)

B : {0, 1, ..., 15} → {0, 17, 34, ..., 255}

Table 1: We present the B mappings for luminance-only
embeddings in order to introduce the Y n notation as well as
illustrate the corresponding luminance values embedded in a
Cryptagram using that mapping for the embedding protocol.

examples. The first example uses a
(

Y B
1×1, C

0
)

CPB. As
we translate (according to B) bits from m to successive
CPBs color values, we fill the JPB from left-to-right, top-to-
bottom, starting in the top-left of the 64 square pixel JPB,
covering each channel independently. We can explore multi-
ple color mappings B in order to see how q, p-Recoverability
is affected by the

(

Y B
1×1, C

0
)

CPB and B interaction.
We consider three mappings for B as shown in Table 1.

The simplified representations for luminance will be used
through this paper. The superscript is the number of bits
that can be embedded given the use of equally space values
in [0, 255], including extremal values.

Figure 6 illustrates the q, p-Recoverability of these choices.
In comparing the best of binary, quadrature, octature, and
hexature bits per pixel discretizations for the

(

Y B
1×1, C

0
)

CPB, we have a sense of how the mapping choices perform
relative to one another. Given a social network quality value
(for JPEG recompression), we want to choose an embedding
that allows for p very close to 1. If we choose the target
quality to be 86%, then the values that are actually at p = 1
are the Quad and Bin mappings. These yield two and one
bits per pixel, respectively. Because we are apt to conser-
vatively choose a quality threshold assuming an OSN may
lower their thresholds slightly (e.g., the OSN finds they save
enough disk space without causing user experience to suffer
too much), we opt to use the Bin approach:

(

Y 1
1×1, C

0
)

.
Figure 7 shows the results of our exploration of the chromi-

nance CPB size and the impact of embedding in luminance
and chrominance concurrently. We must use 2× 2 CPBs in
chrominance channels to embed one bit per channel’s block
(or a cumulative 0.5 bits per pixel gain). We can thus em-
bed in chrominance as a function of the corresponding lumi-
nance values.3 With this approach, we find that embedding
more than two values per chrominance channel suffers low
q, p-Recoverability. Thus while 4 × 4 appears to illustrate
good q, p-Recoverability in the binary embedding case, we

3Notably, if the luminance values are at the extremes (0 or
255), then we do not embed a chrominance value in that
pixel since no valid chrominance value exists.
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CPBs.
We see that more discretizations results in weaker q, p-
Recoverability as the quality to which we subject the JPEG
to decreases. The tradeoff we must consider is what q, p-
Recoverability we want to achieve (what minimum quality
do we want a probabilistic guarantee) and how efficient we
want for our embedding protocol.
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Figure 7: The feasibility of using chrominance to gain
additional bits for embedding. All lines correspond to a
chrominance B binary mapping. n × n corresponds to us-
ing only chrominance to embed bits using a binary mapping
while keeping luminance set to 128. n × n-Y embeds non-
128 chrominance values along with chrominance. This plot
also highlights the tension of using chrominance in tandem
with luminance values. The diminished q, p-Recoverability
may appear marginal when we are embedding binary data
in the luminance space, but performance degrades signifi-
cantly. As we explore the applicability of higher bit rates,
we must carefully balance the interaction of luminance and
chrominance.

think that the efficiency gain is so marginal as to be neg-
ligible. Thus we consider the of use

(

Y 3
1×1, C

1
2×2

)

CPBs to
gain an additional 0.5 bits per pixel. This gain with chromi-
nance always requires error correction in order to attain q, p-
Recoverability that is robust to OSN recompression.

On Decoding. To decode values from a Cryptagram
JPEG, the decoder examines pixels in the same order as the
encoder. Converting the RGB values to Y CbCr, the decod-
ing algorithm finds the nearest neighbor for the values in the
co-domain of theB mapping for that protocol. The sequence
of corresponding domain values is the decoded sequence of
bits.

4.1.2 Balancing q, p-Recoverability and Efficiency with
Error Correction

Since the nature of protocols that we investigate are prob-
abilistically recoverable (the p in q,p-Recoverability), we con-
sider the use of Error Correcting Codes (ECC) in order
to improve the q, p-Recoverability of our protocols while
maintaining efficiency of the embedding algorithm. Reed-
Solomon codes are of interest to us for their well-understood
ECC properties and space efficiency. In our case and espe-
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cially in Section 6, we use RS(255, 223) protocol, in which
we use the x8 + x7 + x2 + x + 1, or “0x187”, field genera-
tor polynomial and 32 bytes for parity in order to recover
up to 16 byte errors for a 255 byte transmission. The in-
put to RS(255, 223) is the encrypted output of the block ci-
pher algorithm. With the application of RS(255, 223) then,
the q, p-Recoverable protocol directly embeds the output bit
stream from RS(255, 223).

From Figure 7, we note how the use of chrominance would
always require ECC in order to recover from OSN recompression-
induced errors for the CPB case we have highlighted:

(

Y 3
1×1, C

1
2×2

)

.

4.2 Lossless Compatibility
Our effort focuses on the JPEG format given its online

prevalence, but it’s worth noting that our approach is seam-
lessly compatible with lossless formats such as PNG [8].

In this lossless scenario, we trivially achieve recoverabil-
ity. The PNG format has a maximum per pixel efficiency
of 64 bits per pixel. Each of the four channels, red, green,
blue, and alpha, can store 16-bit values. We take 64 bits of
sequential data in m, split the 64 bits into four 16-bit seg-
ments, then write the respective 16-bit values into each of
the four channels of a pixel.

4.3 Easy Key Management and Cryptography
Users have two options for managing access to their photos

in Cryptagram: symmetric key cryptosystem or a hybrid
(symmetric key and public key) cryptosystem.

In the case of the symmetric key cryptosystem, Crypta-
gram makes sharing keys easy. A single key can be used for
an image, set of images, or an album, and shared amongst
a group of friends. This makes key sharing easy and man-
ageable by design, and our Cryptagram browser extension
facilitates the use of a password across multiple images or an
album by allowing users to store the password. Enabling a
strong password to be applied across an entire album of pho-
tos means that Cryptagram makes key dissemination easy.

Employing a hybrid cryptosystem by following the prin-
ciples of key continuity management [13] means that the
Cryptagram design focuses on guiding the user to use a hy-
brid cryptosystem correctly. In particular, by (1) limiting
the interface for the use of public keys for encryption and
private keys only for decryption and (2) using strong defaults
for the block cipher and public key cryptography algorithms,
Cryptagram reduces the friction to secure and correct use of
a hybrid cryptosystem.

For both schemes, users do not share the sensitive infor-
mation through the social network. We advise users to use
a separate channel (e.g., text messaging) to share sensitive
credentials (e.g., an album password) so as to conform to
the threat model in which Cryptagram is designed to pro-
tect users from a hosting OSN.

4.4 Usable Image Identifiers
While Cryptagram facilitates the creation of Cryptagram

images, the question remains of how to identify and distin-
guish gray, fuzzy images for friends. We describe how we
enable users to create images that are easier to identify for
fellow human users.

Text Watermark: One challenge with the current for-
mat is that all output images look virtually identical. This
is a problem when, for example, a user asks a friend for a
Cryptagram password. Without a file name or album name,

there is no codified way to refer to images. Using a sim-
ple extension to the encoding tool, we can enable the user
to specify a text or image-based watermark to render un-
derneath the Cryptagram image. A text watermark could
specify useful identifiers, such as a URL or an email address
for submitting password requests.

Chrominance Watermark: In cases that we do not use
the chrominance channels for data transmission, we can use
these channels for identification purposes. We modify the Cb

and Cr channels to add chrominance to output Cryptagrams
and do so without corrupting the luminance payload.

We embed images in these chrominance channels so long
as luminance remains unaffected. This watermark is not
suitable for embedding most natural images since, perceptu-
ally, we rely heavily on luminance, but the technique works
well with high-saturation icons or logos.

4.5 Surviving Partial Failures
The current protocol has error correction and can with-

stand some degree of noise from JPEG but will fail with a
cropping transformation. We can extend the basic design
to provide cropping robustness by dividing a Cryptagram’s
payload into smaller units. We encrypt each block with the
same password and decryption will involve individually de-
crypting and concatenating all blocks. If one block fails
to decode correctly due to cropping, the integrity of other
blocks and their sequence within the original JPEG remain
unharmed. Such an approach, however, does not apply to
storing arbitrary bit streams, but for images one can replace
unrecoverable blocks with zeroes in order to display as much
of the original image as possible as shown in Figure 8.

5. IMPLEMENTATION AND DEPLOYMENT
In this section we describe the current state of the ap-

plications deployed under the Cryptagram name, including
several components and continuously evolving inner proto-
cols. The code is open source and online:

http://github.com/prglab/cryptagram.

5.1 Microbenchmarks
As of the submission of this paper, Cryptagram has over

400 active users (installed and currently present on the user’s
system) of its Chrome extension, distributed through the
Chrome webstore. We request user-consent for an IRB-
approved study to gather non-identifying log reports and
consent has been granted from 373 unique browser installa-
tions.

We built the Chrome Extension with the Closure frame-
work [15], requiring approximately 4000 Source Lines of Code
(SLOC) [7, 38], porting the core components to a Firefox
add-on with some additional code.

Our benchmarking framework consists of an ECC imple-
mentation and benchmarking code, and relies on the Reed-
Solomon kernel module code ported to userspace, libjpeg-
turbo codec, and a corresponding image interface ported
from the Google Chromium browser [35]) (3000 SLOC).

The iOS App uses WebKit’s JavaScriptCore to leverage
the same cryptographic library as our JavaScript extension
whereas the Android App achieves JavaScript integration
through a WebKitView (2300 SLOC). These applications
enable local Cryptagram encoding and decoding – we do
not currently integrate with OSNs. While we do not have
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Figure 8: Partial failure resiliant protocol.

user data for the mobile versions of Cryptagram at this time
to present, we have challenges in engineering and usability
to consider. With respect to engineering we have found that
configuring native cryptographic libraries to be compatible
across languages can be a difficult sea to navigate: our wrap-
ping JavaScript libraries results in a performance penalty
but simplifies the assurance of algorthmic parity across plat-
forms. We also encounter usability challenges with respect
to accessing user’s OSN photos from a third-party applica-
tion. The current aim is to seamlessly integrate with a user’s
existing social workflow rather than require users to use our
product to access their OSNs. If Cryptagram were to be a
self-sufficient entity, then we could foresee aiming to encour-
age user’s to see Cryptagram as a portal to their OSNs. Of
course, then one must balance the terms of service require-
ments of OSNs with the information our product reveals or
does not reveal to those OSNs.

5.2 Browser Extension Decoder
We implemented the first version of the software as a

browser extension, a framework supported by Chrome and
Firefox browsers, which allows us to augment the user ex-
perience on any website by JavaScript injection.

For our first deployment of Cryptagram we adopted an
embedding protocol with a

(

Y 3
2×2, C

0
)

CPB. This protocol
also embeds a checksum for verifying the integrity of the
decoded encrypted bits. The checksum is not of the cleartext
data; it is a checksum of the encrypted data and embedded
adjacent to the encrypted data for data integrity purposes.

Decoding in place. Extensions can access pixel data of
images on a website. The extensions perform image process-
ing to produce new images to insert into the original image’s
container, as shown in figure 2. We add a contextual menu
item so a user can right-click any image and attempt to de-
crypt it as a Cryptagram. With the correct credentials, the
extension decrypts the original image, which pops into place.

5.3 Web-based Encoder
We wrote the web-based encoder in JavaScript with the

Closure Framework, sharing much of the codebase with the
decoder extensions. The encoder allows users to drag-and-
drop cleartext images onto the encoder page. The drag-and-
drop triggers an event to prompt users for a strong password
(in the symmetric key case) as well as desired settings (e.g.,
the preferred tradeoff of a high-resolution, low-quality im-
age or low-resolution, high-quality image). The encryption,
encoding, and produced download zip requires no server in-
teraction and thus allows for complete offline operation by
end-users.

6. EVALUATION
We now explore the evaluation of the Cryptagram system.

We begin with microbenchmarks as well as observations that

serve as background for the subsequent evaluations. In par-
ticular, we will present the efficiency performance of proto-
cols that we find to be the most useful for end-users and
reason about the utility of the current deployment.

6.1 Efficiency Microbenchmarks
With microbenchmarks, we aim to establish a sense of the

tangible weight that Cryptagram adds to the user experience
of sharing photos as well as the system overhead.

On Browser Performance. We found that the input
file size to the encoder and decoder correlated linearly with
time to execute. The approximate ratio of time to complete
the operation (milliseconds) to input filesize (KB) was 2.684
for the encoder and 1.989 for the decoder on an iMac with
2 x 2.26 Quad Core processors in the Chrome browser (one
core for the browser process). While the noticeable human
visual reaction time is in the range of 190 to 330 millisec-
onds [19], the results demonstrate that the overhead of using
Cryptagram for viewing OSN photos is marginal.

On File Size. Since the high entropy of Cryptagram
counteracts the compressive power of JPEG, the output file
size depends entirely on the chosen embedding protocol and
constraints imposed by the OSN. For Google+ and Face-
book, uploading images have a cap based solely on image
dimensions. The authors have found that the maximum up-
load dimensions in these OSNs is 2048 × 2048. This means
that for a scheme that attains an efficiency of three bits per
pixel, we can store at most 1.5 MB in the spatial domain of
an uploaded JPEG image.

How does the size of the input data relate to the output
Cryptagram image size? The nature of JPEG compression
complicates this question. The output Cryptagram image
may be saved at 100% quality, creating a large filesize foot-
print. While this may seem necessary given that we examine
q, p-Recoverability with respect to the compression applied
by an OSN, the composition of JPEG compression is nei-
ther idempotent nor cleanly-defined recursively. Instead, as
we explore later in this section, we consider the observed
error rates of compressing already-compressed Cryptagram
images (simulating what an OSN would do).

Table 2 shows the expansion ratio from a given input
size. For the case of a (Y 3

1×1, C
0) CPB with an output

Cryptagram image with JPEG compression 70, the filesize
on disk inflation is 1.4×.

For the sake of minimizing upload bandwidth, users may
opt to export Cryptagram images with less than 100% qual-
ity and Cryptagram will still guarantee q, p-Recoverability
within a certain range.

6.2 Compressing the Compressed
Apropos to the question of file size expansion, we examine

the implications of a recompressed Cryptagram JPEG on
q, p-Recoverability. Figure 9 shows the effects of exporting
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(Y 3
1×1, C

0) (Y 1
1×1, C

0)

Quality: 90 80 70 90 70 50
Expansion: 2.25 1.75 1.40 7.82 5.29 4.39

Table 2: We present the tabular data that illustrates the
file size expansion when using various protocol choices in the
Cryptagram framework.

Figure 9: The effects of recompressing a compressed JPEG.
The x-axis shows the quality of the original Cryptagram
JPEG. The y-axis shows the recompressed quality of the
JPEG. The line separating striped versus unstriped val-
ues is the q, p-Recoverability threshold we encounter with
RS(255, 223). Any values to the right of the 0.06 line show
the successive recompressions that Cryptagram can toler-
ate for

(

Y 3
1×1, C

0
)

. Error rates were determined by testing
approximately 2,400 pseudorandom 8 × 8 images at each
combination of quality levels.

a Cryptagram to a JPEG Quality 1 and then (as an OSN
would do) recompressing the image at JPEG Quality 2. The
error rate indicates the fraction of CPBs that were broken
through successive recompression. This data indicates that
we can export Cryptagram JPEGs to 82% quality and OSNs’
recompression still permits recoverability, assuming that we
leverage RS(255, 223) ECC.

6.3 OSN Photo Quality
As much of our evaluation relates error rates to JPEG

quality level, we want to know the JPEG settings employed
by popular OSNs. To estimate these quality levels, we ex-
ported a variety of images as quality 95 JPEGs, uploaded
those images to both Facebook and Google+, then re-downloaded
the images for analysis.

On Google+, 30 such test images came back bitwise iden-
tical, meaning images were not recompressed.4

Facebook, on the other hand, applies JPEG compression
to save disk space. After downloading images from Face-
book, we looked for evidence of quality in the JPEG head-
ers. Out of 30 natural images, 25 came back with a JPEG
quantization matrix exactly equivalent to that of a quality
74 JPEG, the other five having matrices equivalent to JPEG
qualities in the range of 76 to 86.

Fortunately for Cryptagram, high entropy images all ap-
pear similarly to the JPEG algorithm and are treated pre-
dictably when uploaded to Facebook. All test Cryptagrams
uploaded then downloaded came back with the quantization
matrix from a quality 85 or 87 JPEG, which we measured
by explicitly examining the quantization tables of the down-

4Google+ does recompress images for quicker display during
album browsing but it is trivial to convert any such hyper-
links to their full-resolution equivalents.
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Figure 10: This indicates to us the feasibility of leveraging
RS(255, 223) to improve the q, p-Recoverability with various
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embedding protocols.

loaded JPEG file. This quality level puts us safely above the
necessary threshold of our deployed embedding protocol.

6.4 Embeddings with ECC
In this section, we examine the benefit of using ECC to

reconcile the tradeoffs we must consider between efficiency
and q, p-Recoverability. We presented in Section 4 the per-
formance of the

(

Y B
1×1, C

0
)

CPB for various B mappings.
From that experience, we conclude that a protocol without
error correction is limited to using quad or bin mapping
strategies.

We examine the utility of applying our ECC algorithm
of choice for embedding data to measure q, p-Recoverability
in lower quality regimes of JPEG compression. With the
use of RS(255, 223) for ECC, we note that we embed 14%
extra data for the recovery so our subsequent evaluation
considers the effective efficiency of a system that adds this
data overhead.

Figure 10 allows us to explore the design space of applying
ECC to evaluate the q, p-Recoverability for given

(

Y B
1×1, C

0
)

luminance-only embedding schemes. We see that the Bin,
Quad and Oct embedding schemes perform above p=94 in
the regime around 85%, thus enabling us to achieve q, p-
Recoverability on Facebook.

Figure 11 illustrates the benefit of using luminance and
chrominance embeddings in order to achieve 3.5 bits per
pixel embedding efficiency for q, p-Recoverability that satis-
fies OSN recompression and ECC. In the interest of saving
space, we do not show the q, p-Recoverability curves, but in-
stead summarize the details relevant to the ECC discussion
in Table 3. Given that ECC with RS(255, 223) recovers up
to 16 bytes (≈ 6.27%) of damaged bytes for every 255 bytes
of data, we can establish our target recoverability probabil-
ity at ≈ 94%; in other words, if less than 6% of bytes break
then applying ECC enables us to use that particular encod-
ing scheme. We highlight in Table 3 the q, p-Recoverable
protocol that we choose for Cryptagram.

This efficiency is superior to X-pire! [1], which had a ca-
pacity of two bits per pixel with ECC. We have 1.75× this
capacity, significant considering the size and quality of im-
ages this enables users to upload to OSNs.

Comparison with Steganographic Efficiency.
Though the goals of steganography and Cryptagram differ,
both embed data in images, so we can compare the two in
terms of bits/pixel efficiency.

Related work has expounded on the efficiency of stegano-
graphic embeddings [5, 37], reducing the approach to one
embedding p message bits into 2p − 1 pixels, yielding a rela-
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Without ECC With ECC (RS(255, 223))
q, 100-Rec Efficiency q, 94-Rec Effective Lum+Chrom Efficiency Effective

lum |B| (quality) (bits/pix) (quality) Efficiency q, 94-Rec (bits/pix) Efficiency

Hex - - 90 3.5 90 4.5 3.94
Oct 90 3 76 2.62 77 3.5 3.06
Quad 80 2 44 1.75 66 2.5 2.19
Bin < 20 1 < 10 0.87 38 1.5 1.31

Table 3: Summary of the results that inform how to proceed with applying RS(255, 223) FEC for embedding values in
JPEGs that are recompressible.
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Figure 11: This indicates the feasibility of leverag-
ing RS(255, 223) to improve the q, p-Recoverability of a
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)

protocol.

tive payload of α = p/(2p−1). While steganography choose
slightly higher values of p a low value of p yields 0.42 bits
per pixel for p = 3. In the highlighted row, our effective ef-
ficiency is 3.06 bits per pixel. In comparison, our approach
represents a minimum 7.5× improvement.

6.5 File Format Embedding Comparison
In Figure 12, we show the q, p-Recoverability versus filesize

ratio of JPEG versus webp image compression formats. By
file ratio, we mean the on-disk size of the output image for-
mat for the same image canvas input. Notably, the embed-
dings are always three bits per pixel in the Figure. We see
that for the same probability of recovery, p, webp has a much
smaller filesize ratio than JPEG. As OSNs besides Google+
begin to experiment with webp deployment [32], the oppor-
tunity for lower bandwidth and storage requirements while
maintaining q, p-Recoverability means that Cryptagram can
be applied as improved media compression formats are adopted.

6.6 Deployment Usage Data
At the time of submission, Cryptagram has nearly 400

active installations, with 373 users agreeing to participate
in our IRB-approved study. Through this study, we receive
high-level data about the Cryptagram encryption and de-
cryption habits of our users. The following data does not
include the authors’ own tests or images. We have had more
than 3,300 Cryptagram image decryption events with more
than 160 unique encrypted images generated. Of the de-
crypted images, we can confirm that 102 unique images have
been decrypted from Facebook and 217 unique images from
Google+.

7. DISCUSSION
Applicability of q, p-Recoverability to Lossy For-

mats. OSNs continue to use lossy image formats in order
to reduce demands on storage infrastructure and reduce de-
livery latencies to end-users. Recently developed formats
shoud be considered given these goals. We have begun to
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Figure 12: Showing the comparison of JPEG and lossy
webp recoverability vs. filesize ratio. We draw the reader’s
attention to the p = 94 threshold as a point of comparison
with the ECC studies in the rest of this paper. We acknowl-
edge that JPEG and webp quality settings are not related
and cannot be directly compared. However, this figure shows
that for a similar notion of q, p-Recoverability, webp has a
smaller filesize expansion than JPEG to achieve the same
probability of recovery. To note the distinction in the mean-
ing of “quality” between libjpeg and webp, we highlight the
points along the curves where quality is 74 for each codec.

examine the webp [16] format for Cryptagram. The tool of
q, p-Recoverability applies in the analysis of these formats
given that the spatial domain pixel value is the key compo-
nent of Cryptagram communication.

Transformations. We aim to handle a variety of trans-
formations with the development of q, p-Recoverable pro-
tocols. In previous sections, we discussed the design and
evaluated our protocols’ q, p-Recoverability with respect to
the JPEG transformation. We have begun prototyping our
approach to cropping and noising transformations on im-
ages produced by Cryptagram as well, leveraging blocking
algorithms coupled with ECC. While we do not address ro-
tation explicitly, we do not consider such a transformation
intractable as we apply techniques from QR Codes (two di-
mensional barcodes) by orienting corner features in future
iterations.

Scaling transformations are of interest given the pervasive-
ness of lower resolution images (e.g., thumbnails) to partially
depict images on a social networking website. We have con-
sidered the integration of pyramid representations [3, 6] in
the design of future embedding protocols to meet this trans-
formation request.

The Economics of Privacy. Our culture values greatly
the power of images to document and record in ways that
words simply cannot. We say seeing is believing. Images
convey a range of human experience, and unfortunately, that
includes images that can irrevocably damage a person’s rep-
utation.

OSNs offer privacy features and third parties have even
developed commercial products to address photo privacy.
McAfee Social Protection lets users store cleartext photos on
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their server while uploading blurred versions to Facebook,
then facilitates access requests [30]. This superficially ad-
dresses photo privacy, but in the end, amounts to an escrow
service that redirects trust from one third party to another.

Our optimistic vision for this project is that its adoption
could articulate to OSNs that users desire increased own-
ership over personal data. We envision a scenario in which
an OSN embraces the philosophy of Cryptagram and pro-
vides client-side tools to make end-to-end encryption fea-
sible. Wide adoption of Cryptagram would require more
storage for the encrypted files and may create less potential
for targeted advertising.

8. RELATED WORK
P3 [29] examined the use of non-colluding services to store

minimally-revealing cleartext images in one service and en-
crypted versions of DCT coefficients of JPEG images in an-
other service. Their system experienced a 10-20% file size
increase from the original compressed image when one fol-
lows their recommended privacy-preserving settings by set-
ting the DCT-hiding threshold in the range T ∈ [10, 20].
The authors acknowledged their technique’s vulnerability to
face identification when T ≥ 35. Cryptagram fundamentally
differs from P3 in two ways. First, Cryptagram completely
avoids the use of third parties. Secondly, Cryptagram works
only in the encrypted bit space and does not expose any
unencrypted data to the end-user. Unless users’ keys are
compromised, users cannot have their faces detected with
any of our embedding protocols.

Steganography. Cryptagram is superficially reminiscent
of various attempts to embed cryptographic data in JPEG
through traditional steganographic techniques [11], but dif-
fers significantly from conventional JPEG steganography.
Cryptagram makes obvious that it is hiding data to attain
greater efficiency, and furthermore, does so in a way that
is robust to image compression, which steganography gener-
ally is not. Attempts to achieve lossy compression tolerant
steganography are early works with inefficient results [17].

One recent work attempted to embed data in JPEG DCT
coefficients without the steganographic constraint of being
hidden. The non-linearities of DCT quantization and round-
ing in standard compression and decompression required
very conservative data embedding that resulted in efficiency
significantly lower than what we were able to achieve [1].

Li et al. [20] address the concern of hiding data within
DCT coefficients but shuffle the DCT coefficients between
blocks that then are quantized during the JPEG compres-
sion algorithm. Likewise, Poller et al. demonstrate that
DCT coefficient permutation and spatial domain permuta-
tion do provide some security features but do not address
efficiency or prove the correctness of their security mecha-
nism [26].

A formalization for the description of the embeddings that
we use in Cryptagram have been explored by Galand and
Kabatiansky [12] but the authors do not explore how to
construct such protocols.

But Cheddad et al. [4] claim that spatial domain tech-
niques are not robust against noise, only work in bitmap-
formatted images, and are not robust against lossy com-
pression and image filters. Cryptagram overcomes all of
these drawbacks in spatial domain embedding and demon-
strates the useful privacy and security properties that can
be available for OSN photo sharing. Cryptagram achieves

q, p-Recoverability in the face of the complete recompression
of the JPEG image containing sensitive information.

9. CONCLUSIONS
The advent of popular online social networking has re-

sulted in the compromise of traditional notions of privacy, es-
pecially in visual media. In order to facilitate convenient and
principled protection of photo privacy online, we have pre-
sented the design, implementation, and evaluation of Crypta-
gram, a system that efficiently and correctly protects users
photo privacy across popular OSNs. We have introduced
q, p-Recoverability and demonstrated Cryptagram’s ability
to embed cryptographic primitives correctly to attain q, p-
Recoverability through JPEG compression in our implemen-
tation.
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Can ID Faces, but Using Them Grows Tricky. The
New York Times (2012).

[32] Shankland, S. Facebook tries Google’s WebP image
format. http://news.cnet.com/8301-1023_
3-57580664-93/
facebook-tries-googles-webp-image-format-users-squawk/.

[33] Stone, Z., Zickler, T., and Darrell, T. Toward
large-scale face recognition using social network
context. Proceedings of the IEEE 98, 8 (2010),
1408–1415.

[34] Tapscott, D. Grown Up Digital: How the Net
Generation is Changing Your World HC, 1 ed.
Mcgraw-Hill, 2008.

[35] The Chromium Authors. libjpeg | The Chromium
Projects. http://src.chromium.org/viewvc/chrome/
trunk/src/third_party/libjpeg/.

[36] Union, I. T. Digital Compression and Coding of
Continuous-tone Still images. CCITT Rec. T.81, 1992.

[37] Westfeld, A., and Pfitzmann, A. High capacity
despite better steganalysis (f5–a steganographic
algorithm). In Information Hiding, 4th International
Workshop (2001), vol. 2137, Pittsburgh, PA,
pp. 289–302.

[38] Wheeler, D. SLOCCount.
http://www.dwheeler.com/sloccount/.

[39] Zimmermann, P. R. The official PGP user’s guide.
MIT press, 1995.

APPENDIX

A. APPENDIX

A.1 JPEG Review
JPEG is a lossy codec designed to provide reasonable

tradeoffs between compression and recoverability of the orig-
inal image [36]. We chose JPEG because of its prevalence
on the web and the availability of efficient JPEG libraries.
Here we review the core elements of JPEG that affect our
protocol design.

Transformations.
The first step in compressing an input bitmap image, M to

JPEG is a color space transformation. In particular, JPEG
transforms every pixel in M from the RGB to the Y CbCr

color space through a linear transformation that converts
red, green, and blue (RGB) pixel values to luminance (Y ),
chrominance blue (Cb), and chrominance red (Cr) values.

Y
′ = (0.299 ·R

′
D) + (0.587 ·G

′
D) + (0.114 ·B

′
D)

CB = 128 − (0.168736 ·R
′
D)− (0.331264 ·G

′
D) + (0.5 ·B

′
D)

CR = 128 + (0.5 ·R
′
D)− (0.418688 ·G

′
D)− (0.081312 ·B

′
D)

After the color space transformation, the JPEG algorithm
transforms the three color channels of Y CbCr independently.

Subsampling.
Following the initial color space transformation, JPEG

subsamples the color channels. In the default libjpeg codec
settings, luminance is not subsampled while chrominance
blue and chrominance red data undergo 2:1 subsampling ver-
tically and horizontally, also known as “4:2:0” subsampling.
This results in one-fourth the number of pixels that repre-
sent each of the original chrominance blue and chrominance
red channels.
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Discrete Cosine Transform.
The output matrices of subsampling are then transformed

using the Discrete Cosine Transform. Since the DCT for
JPEG operates only on 8×8 pixel blocks, JPEG breaks each
of the subsampled spaces into non-overlapping 8 × 8 pixel
blocks. This paper we will refer to these units as JPEG
Pixel Blocks or JPBs.

The DCT is a well-understood transformation from the
spatial to frequency domain. We present the two dimen-
sional DCT here:

Gu,v =
7

∑

x=0

7
∑

y=0

α(u)α(v)gx,y cos

[

π

8

(

x +
1

2

)

u

]

cos

[

π

8

(

y +
1

2

)

v

]

,

where u ∈ {0, 1, . . . , 7} is the horizontal spatial frequency;
v ∈ {0, 1, . . . , 7} is the vertical spatial frequency;

α(u) =







√

1

8
, if u = 0

√

2

8
, otherwise

is a normalizing scale factor to maintain orthonormality; gx,y
is the pixel value at coordinates (x, y); and Gu,v is the DCT
coefficient at coordinates (u, v). The two dimensional DCT,

Figure 13: Visualization of the 64 DCT basis functions.

computed on each 8×8 block of pixels in an image, results in
64 coefficients per block; the visual representation of which
is in Figure 13.

Quantization.
The DCT returns real values but we have to represent

them on disk with limited precision. The JPEG codec stores
each of the 64 coefficients not as a float but as a single 8-bit
number that, combined with the quantization matrix, can
approximate a real number.

Here is the standard luminance quantization table in JPEG.






























16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99































And for chrominance:































17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99































This means, for example, that to approximate the value
99.0 for the 0th (pure DC) component, we would write the
integer ⌊ 99.0

16
⌋ = 6. In short, the lower the value in the quan-

tization matrix, the greater the precision for preservation of
that particular DCT coefficient. By scaling all values in
the quantization table, JPEG prioritizes lower frequencies
(which are more obvious to the human eye) while allowing
end-users to achieve a range of qualities.

Chrominance red and chrominance blue use a separate
quantization matrix which is more heavily quantized, since
the human eye is less sensitive to variations in chrominance
than luminance [36].

Entropy Coding.
Once JPEG computes the quantized values, JPEG loss-

lessly writes these values to disk. This deterministic op-
eration provides the biggest savings for bytes on disk. In
particular, values are zigzag encoded, meaning that the or-
der of values written to disk follows a zigzag pattern. Any
repeated values in the zigzag ordered list JPEG writes as a
compressed value; e.g., the JPEG algorithm dictates writ-
ing 20 sequential 0’s as 20{0}. The benefits of this process
is a reduced amount of disk space required to represent the
values.

A.1.1 Decoding JPEG

Dequantization.
Given the original JPEG quantization matrix in the JPEG

file, the decompression algorithm multiplies the values read
from disk with the corresponding quantization matrix en-
tries.

Inverse DCT.
JPEG applies the inverse DCT function to each set of 64

dequantized coefficients to produce the lossy output 8 × 8
block of pixels.

Shifting and Upsampling Chrominance.
Values in all of color spaces are then shifted up by 128 to

be within the valid display ranges again. JPEG upsamples
chrominance accordingly.

Conversion from Y CbCr to RGB.
Finally, JPEG executes the last linear transformation be-

tween Y CbCr to RGB to present a human comprehensible
RGB image.

R = Y + 1.402 · (CR − 128)

G = Y − 0.34414 · (CB − 128) − 0.71414 · (CR − 128)

B = Y + 1.772 · (CB − 128)
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